Download Efficient Simulation of the Bowed String in Modal Form
The motion of a bowed string is a typical nonlinear phenomenon resulting from a friction force via interaction with the bow. The system can be described using suitable differential equations. Implicit numerical discretisation methods are known to yield energy consistent algorithms, essential to ensure stability of the timestepping schemes. However, reliance on iterative nonlinear root finders carries significant implementation issues. This paper explores a method recently developed which allows nonlinear systems of ordinary differential equations to be solved non-iteratively. Case studies of a mass-spring system and an ideal string coupled with a bow are investigated. Finally, a stiff string with loss is also considered. Combining semi-discretisation and a modal approach results in an algorithm yielding faster than real-time simulation of typical musical strings.
Download Efficient simulation of the yaybahar using a modal approach
This work presents a physical model of the yaybahar, a recently invented acoustic instrument. Here, output from a bowed string is passed through a long spring, before being amplified and propagated in air via a membrane. The highly dispersive character of the spring is responsible for the typical synthetic tonal quality of this instrument. Building on previous literature, this work presents a modal discretisation of the full system, with fine control over frequency-dependent decay times, modal amplitudes and frequencies, all essential for an accurate simulation of the dispersive characteristics of reverberation. The string-bow-bridge system is also solved in the modal domain, using recently developed noniterative numerical methods allowing for efficient simulation.